48 research outputs found

    Aalto-1, multi-payload CubeSat: In-orbit results and lessons learned

    Get PDF
    The in-orbit results and lessons learned of the first Finnish satellite Aalto-1 are briefly presented in this paper. Aalto-1, a three-unit CubeSat which was launched in June 2017, performed Aalto Spectral Imager (AaSI), Radiation Monitor (RADMON) and Electrostatic Plasma Brake (EPB) missions. The satellite partly fulfilled its mission objectives and allowed to either perform or attempt the experiments. Although attitude control was partially functional, AaSI and RADMON were able to acquire valuable measurements. EPB was successfully commissioned but the tether deployment was not successful.In this paper, we present the intended mission, in-orbit experience in operating and troubleshooting the satellite, an overview of experiment results, as well as lessons learned that will be used in future missions.</div

    Aalto-1, multi-payload CubeSat: design, integration and launch

    Get PDF
    The design, integration, testing, and launch of the first Finnish satellite Aalto-1 is briefly presented in this paper. Aalto-1, a three-unit CubeSat, launched into Sun-synchronous polar orbit at an altitude of approximately 500 km, is operational since June 2017. It carries three experimental payloads: Aalto Spectral Imager (AaSI), Radiation Monitor (RADMON), and Electrostatic Plasma Brake (EPB). AaSI is a hyperspectral imager in visible and near-infrared (NIR) wavelength bands, RADMON is an energetic particle detector and EPB is a de-orbiting technology demonstration payload. The platform was designed to accommodate multiple payloads while ensuring sufficient data, power, radio, mechanical and electrical interfaces. The design strategy of platform and payload subsystems consists of in-house development and commercial subsystems. The CubeSat Assembly, Integration & Test (AIT) followed Flatsat -- Engineering-Qualification Model (EQM) -- Flight Model (FM) model philosophy for qualification and acceptance.The paper briefly describes the design approach of platform and payload subsystems, their integration and test campaigns, and spacecraft launch. The paper also describes the ground segment & services that were developed by the Aalto-1 team.</p

    FORESAIL-1 cubesat mission to measure radiation belt losses and demonstrate de-orbiting

    Get PDF
    Abstract Today, the near-Earth space is facing a paradigm change as the number of new spacecraft is literally sky-rocketing. Increasing numbers of small satellites threaten the sustainable use of space, as without removal, space debris will eventually make certain critical orbits unusable. A central factor affecting small spacecraft health and leading to debris is the radiation environment, which is unpredictable due to an incomplete understanding of the near-Earth radiation environment itself and its variability driven by the solar wind and outer magnetosphere. This paper presents the FORESAIL-1 nanosatellite mission, having two scientific and one technological objectives. The first scientific objective is to measure the energy and flux of energetic particle loss to the atmosphere with a representative energy and pitch angle resolution over a wide range of magnetic local times. To pave the way to novel model - in situ data comparisons, we also show preliminary results on precipitating electron fluxes obtained with the new global hybrid-Vlasov simulation Vlasiator. The second scientific objective of the FORESAIL-1 mission is to measure energetic neutral atoms (ENAs) of solar origin. The solar ENA flux has the potential to contribute importantly to the knowledge of solar eruption energy budget estimations. The technological objective is to demonstrate a satellite de-orbiting technology, and for the first time, make an orbit manoeuvre with a propellantless nanosatellite. FORESAIL-1 will demonstrate the potential for nanosatellites to make important scientific contributions as well as promote the sustainable utilisation of space by using a cost-efficient de-orbiting technology.Peer reviewe

    Design of Magnetorquer-Based Attitude Control Subsystem for FORESAIL-1 Satellite

    No full text
    The magnetorquer-based attitude control system capable of attaining high spin rates and precise pointing control is required for a 3U CubeSat satellite FORESAIL-1. The satellite, developed by the Finnish Centre of Excellence, needs to maintain a spin rate of 24°/s and precise pointing of the spin axis toward the Sun for the particle telescope instrument, as well as to reach 130°/s spin rate for the deployment of the plasma brake. Mission requirements analysis and attitude system requirements derivation are presented, followed by actuator tradeoff and selection, with a detailed design of the complete attitude control system, including the air-cored type of magnetorquer actuators and their drivers, made of H-bridge and filtering components. The design is based on several theoretical and practical considerations with emphasis on the high-power efficiency, such as effects of parallel and serial magnetorquer connections, modeling the magnetorquers with equivalent circuit models for finding a suitable driving frequency and extrapolation methods for efficient dipole moment usage. The in-house manufacturing process of magnetorquers, using a custom 3-D-printer setup, is described. Finally, the testing and verification are performed, by measuring the performance of the manufactured hardware, circuit simulations, and attitude control simulations. It is shown that the manufactured attitude control system fulfills all system requirements. Simulations also confirm the capability to satisfy mission requirements.Peer reviewe

    Lack of paraoxonase 1 alters phospholipid composition, but not morphology and function of the mouse retina

    Full text link
    PURPOSE: Biochemical and genetic analyses established a contribution of lipid metabolism to AMD pathology. Paraoxonase 1 (PON1) is an antioxidative protein involved in high density lipoprotein (HDL) function and was found to be associated with AMD. Here, we used Pon1(-/-) mice to study the influence of PON1 on retinal physiology and to reveal the potential impact of PON1 on AMD etiology. METHODS: Laser capture microdissection served to isolate single retinal layers. Retinal function was assessed by ERG. Retinal and RPE morphology were monitored by fundus imaging, fluorescein angiography, light and transmission electron microscopy, and immunofluorescence microscopy. Levels of mRNA and composition of phospholipid species were determined by real-time PCR and LC-MS, respectively. RESULTS: Adult (8 weeks old) Pon1(-/-) mice displayed normal retinal function and morphology, but their retinas contained reduced amounts of lysophosphatidylcholines (LPCs) compared to controls. Aged (12 months old) Pon1(-/-) animals did not show any morphologic or molecular signs of photoreceptor or RPE degeneration, or of accelerated aging. Photoreceptors of Pon1(-/-) and control mice were similarly susceptible to light damage. CONCLUSIONS: Results indicated that PON1 is not essential for normal development, function, ageing, and the defense against light damage of the mouse retina. Reduced levels of LPCs in eyes of Pon1(-/-) mice may reflect a decreased activity of phospholipase A2 or altered antioxidative activity in aged eyes
    corecore